

Welcome to Python USI submission REST API’s documentation!

Contents:

	Python USI submission REST API
	Features

	API Endpoints

	Credits

	Installation
	Stable release

	From sources

	Usage
	Creating an Auth object

	Creating an USI User

	Creating a Team
	Add Profile to Domain

	Adding User to Team

	Create a Submission
	Add Samples to a Submission

	Check and finalize a Submission
	Querying for biosample validation status

	Checking errors

	Finalize a Submission

	Fetch a submission by name

	Get Sample from a submission

	Advanced Usage
	Retrieving Submission Objects

	Working with samples

	pyUSIrest
	pyUSIrest package
	Submodules

	pyUSIrest.auth module

	pyUSIrest.client module

	pyUSIrest.exceptions module

	pyUSIrest.settings module

	pyUSIrest.usi module

	Module contents

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	TODO

	0.3.1 (2020-01-27)

	0.3.0 (2020-01-14)
	Features

	0.2.2 (2019-03-28)
	Features

	0.2.1 (2019-01-15)
	Features

	0.2.0 (2018-10-23)
	Features

	0.1.0 (2018-10-17)
	Features

Indices and tables

	Index

	Module Index

	Search Page

Python USI submission REST API

[image: _images/pyUSIrest.svg]
 [https://pypi.python.org/pypi/pyUSIrest][image: _images/pyUSIrest1.svg]
 [https://travis-ci.org/cnr-ibba/pyUSIrest][image: Documentation Status]
 [https://pyusirest.readthedocs.io/en/latest/?badge=latest][image: _images/badge.png]
 [https://coveralls.io/github/cnr-ibba/pyUSIrest?branch=master][image: Scrutinizer code quality (GitHub/Bitbucket)]
 [https://scrutinizer-ci.com/g/cnr-ibba/pyUSIrest/?branch=master]Python USI submission REST API contain all methods to interact with EMBL-EBI
Unified Submissions Interface

	Free software: GNU General Public License v3

	Documentation: https://pyusirest.readthedocs.io.

Features

	Deal with EBI AAP [https://explore.api.aai.ebi.ac.uk/docs/] (Authentication, Authorisation and Profile) service,
generating tokens and dealing with User and Groups

	Interact with EBI USI (Unified Submission Interface) in order to submit data to
biosample as described by this guide [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html]. In details:

	Getting USI API root [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html#_start_from_the_root]

	Selecting a Team [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html#_pick_a_team]

	Creating a Submission [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html#_creating_a_submission]

	Adding items to Submission [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html#_adding_documents_to_a_submission]

	Checking Biosample Validation [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html#_validation]

	Finalising [https://submission-test.ebi.ac.uk/api/docs/guide_getting_started.html#_finalising_your_submission] a Submission

API Endpoints

pyUSIrest is written to exploit the BioSamples test environment endpoints.
You are incuraged to understand how BioSamples submission works before do a
real submission in BioSamples production servers. You can find more information
on how to do a real submission in BioSamples production servers in readthedocs
documentation: https://pyusirest.readthedocs.io

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Python USI submission REST API, run this command in your terminal:

$ pip install pyUSIrest

This is the preferred method to install Python USI submission REST API, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Python USI submission REST API can be downloaded from the Github repo [https://github.com/cnr-ibba/pyUSIrest].

You can either clone the public repository:

$ git clone git://github.com/cnr-ibba/pyUSIrest

Or download the tarball [https://github.com/cnr-ibba/pyUSIrest/tarball/master]:

$ curl -OJL https://github.com/cnr-ibba/pyUSIrest/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Python USI submission REST API in a project, you should import
Root and Auth
in order to interact with USI [https://submission-test.ebi.ac.uk/api/browser/index.html#/api/] endpoint ad EBI AAP [https://explore.api.aai.ebi.ac.uk/docs/]:

from pyUSIrest.auth import Auth
from pyUSIrest.usi import Root

Warning

Using the BioSamples production endpoints: pyUSIrest is written in order to
explot the BioSamples testing environment. You are incuraged to understand the
whole process of data submission in the test environment. In order to do a real
submission, you have to override the submission endpoints after importing modules
before modifying submission objects:

pyUSIrest.settings.AUTH_URL = "https://api.aai.ebi.ac.uk"
pyUSIrest.settings.ROOT_URL = "https://submission.ebi.ac.uk"

Creating an Auth object

With an Auth object, you’re able to generate a
AAP [https://explore.api.aai.ebi.ac.uk/docs/] token from EBI and use it in browsing USI [https://submission-test.ebi.ac.uk/api/browser/index.html#/api/] endpoint. You can instantiate a
new Auth providing your AAP [https://explore.api.aai.ebi.ac.uk/docs/] username and password:

auth = Auth(user=<usi_username>, password=<usi_password>)

Alternatively you can create an Auth object
starting from a valid token:

auth = Auth(token=<token_string>)

Creating an USI User

In order to create a new USI user, with pyUSIrest you can use the method
create_user of the
User class:

from pyUSIrest.usi import User

user_id = User.create_user(
 user=<new_usi_username>,
 password=<new_password>,
 confirmPwd=<new_password>,
 email=<your_email>,
 full_name=<your full name>,
 organization=<your_organization
)

Creating a Team

To create a team, you will need to create a new User
from a valid Auth object, then you could create
a team using the create_team method:

from pyUSIrest.usi import User
user = User(auth)
team = user.create_team(description="Your description")

Warning

remember to ri-generate the token in order to see the new generated team using
pyUSIrest objects

Add Profile to Domain

Warning

You don’t need to do this with a new generated user. You should use this method only
if you experience problems when creating a submission.

To create a profile for a team:

domain = user.get_domain_by_name(<team name>)
domain.create_profile(attributes={"centre name": "My Institution"})

For more informations, take a look to creating a domain profile [https://explore.api.aai.ebi.ac.uk/docs/profile/index.html#resource-create_domain_profile]

Adding User to Team

To add a user to a team, you need to provide a user_id, like the one
obtained by creating a user, or by calling get_my_id
from a User instance:

user = User(auth)
user_id = user.get_my_id()

Next, you need to find out the domain reference of a team using a team name and
get_domain_by_name method:

domain = user.get_domain_by_name(team.name)
domain_id = domain.domainReference

To add user to a team call add_user_to_team:

user.add_user_to_team(user_id=user_id, domain_id=domain_id)

Create a Submission

From a valid Root object, get the
Team object providing the team_name in which the
submission will be created. Then create a new Submission
using the create_submission method:

team = root.get_team_by_name(<your team name>)
submission = team.create_submission()

If you got a ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError] exception during last command, you need to add
a profile to your domain as described in add profile to domain.

Add Samples to a Submission

In order to add sample to a submission, define a dict [https://docs.python.org/3/library/stdtypes.html#dict] for sample data,
then add them using create_sample.
In the following example, a test animal and a sample from that animal are created:

define data as dictionaries. Ensure that mandatory keys
are provided or biosample will throw an error
animal_data = {
 'alias': 'animal_1',
 'title': 'A Sample Organism',
 'releaseDate': '2018-06-19',
 'taxonId': 9940,
 'taxon': 'Ovis aries',
 'attributes': {'material': [{'value': 'organism',
 'terms': [{'url': 'http://purl.obolibrary.org/obo/OBI_0100026'}]}],
 'project': [{'value': 'A Sample Project'}]},
 'sampleRelationships': []}

add this animal to submission
sample = submission.create_sample(animal_data)

Now generate a sample derived from the previous one.
This link is provided by sampleRelationships key
sample_data = {'alias': 'sample_1',
 'title': 'A Sample Speciemen',
 'releaseDate': '2018-06-19',
 'taxonId': 9940,
 'taxon': 'Ovis aries',
 'description': 'A Useful Description',
 'attributes': {'material': [{'value': 'specimen from organism',
 'terms': [{'url': 'http://purl.obolibrary.org/obo/OBI_0001479'}]}],
 'project': [{'value': 'A Sample Project'}]},
 'sampleRelationships': [{'alias': 'animal_1',
 'relationshipNature': 'derived from'}]}

add this sample to the submission
sample = submission.create_sample(sample_data)

Check and finalize a Submission

Querying for biosample validation status

After submitting all data, before finalize a submission, you need to ensure that
all the validation steps performed by USI [https://submission-test.ebi.ac.uk/api/browser/index.html#/api/] are done with success. You can query
status with get_status:

status = submission.get_status()
print(status) # Counter({'Complete': 2})

status will be a collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] object. In order to finalize a
submission to biosample, get_status
need to return only Complete as status (not Pending), with a number equal
to the number of samples attached to submission

Checking errors

Another method to check submission status before finalizing it is to check for errors
with has_errors method:

errors = submission.has_errors()
print(errors) # Counter({False: 1, True: 1})

If there is any True in this collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] object,
submission has errors and can’t be finalized. You will need to search
for sample with errors in order to remove or update it. Only when this function
return False with a number equal to the number of attached samples, a
submission can be finalized.

Finalize a Submission

After managing sample and validation statuses, if everything is ok you can finalize
your submission with finalize:

submission.finalize()

After finalization, you can’t add more data to this submission. You may want to
reload your data in order to retrieve the biosample ids, as described by
get samples from a submission.

Fetch a submission by name

In order to get a submission by name, call get_submission_by_name
from a valid Root object:

root = Root(auth=auth)
submission = root.get_submission_by_name(
 'c3a7e663-3a37-48d3-a041-8c18088e3185')

Get Sample from a submission

In order to get all samples for a submission, you can call the method
get_samples
on a Submission object:

samples = submission.get_samples()

You can also filter out samples by validationResult or if the have errors or not.
For a list of validationResult, check the output of get_status:

fetching pending samples
samples_pending = submission.get_samples(validationResult='Pending')

get samples with errors
samples_error = submission.get_samples(has_errors=True)

Advanced Usage

The Python USI submission REST API could be used to manage multiple submissions
and samples in the same time. Most of its functions returns iterator objects, in
such way some time consiming tasks can be executed lazily and can be filtered and
sorted using the appropriate methods. Here there are described some useful tips
useful to manage user submission data

Retrieving Submission Objects

You could retrieve all submission objects from Root
using get_user_submissions: such
method returns an iterator object:

from pyUSIrest.auth import Auth
from pyUSIrest.usi import Root

auth = Auth(user=<usi_username>, password=<usi_password>)
root = Root(auth)

for submission in root.get_user_submissions():
 print(submission)

Submission objects could be also filtered
by status or by team name:

for submission in root.get_user_submissions(status="Draft", team='subs.test-team-19'):
 print(submission)

Submission could be sorted using attributes, as described in Sorting HOW TO [https://docs.python.org/3/howto/sorting.html]:

from operator import attrgetter

for submission in sorted(root.get_user_submissions(), key=attrgetter('lastModifiedDate'), reverse=True):
 print(submission)

In a similar way, submission could be filtered reling their attributes, for example
you can retrieve the recent modified submissions in a similar way:

from datetime import datetime, timezone
from dateutil.relativedelta import relativedelta

recent_submission = lambda submission: submission.lastModifiedDate + relativedelta(months=+1) > datetime.now(timezone.utc)

for submission in filter(recent_submission, root.get_user_submissions()):
 print(submission)

Submission could be derived also from get_submissions
from a Team instance. In this case, the submission will
be filtered accordingly to the team, and can be filtered or sorted in the same
way as described before:

team = root.get_team_by_name('subs.test-team-19')

for submission in team.get_submissions():
 print(submission)

Working with samples

The get_samples method from
Submission returns an iterator of
Sample instances, and so can be filtered in
a similar way as Submission instances:

submission = root.get_submission_by_name('40549619-7797-4672-b703-93a72c3f984a')

get all samples in 'Pending' validation status
for sample in submission.get_samples(status="Pending"):
 print(sample)

get all samples with errors in USI validation
for sample in submission.get_samples(has_errors=True):
 print(sample)

returning samples with errors in other checks than Ena
for sample in submission.get_samples(has_errors=True, ignorelist=['Ena'])
 print(sample)

You can also filter a Sample by an attribute,
like you can do with Submission objects,
for example you can retrieve a sample in a submission by title:

for sample in filter(lambda sample: sample.title == 'SampleTitle', submission.get_samples()):
 print(sample)

pyUSIrest

	pyUSIrest package
	Submodules

	pyUSIrest.auth module

	pyUSIrest.client module

	pyUSIrest.exceptions module

	pyUSIrest.settings module

	pyUSIrest.usi module

	Module contents

pyUSIrest package

Submodules

pyUSIrest.auth module

Created on Thu May 24 15:46:37 2018

@author: Paolo Cozzi <cozzi@ibba.cnr.it>

	
class pyUSIrest.auth.Auth(user=None, password=None, token=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Deal with EBI AAP tokens. Starts from a token object or by providing
user credentials. It parse token and provide methods like checking
expiration times.

	
auth_url

	Default url for EBI AAP.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
expire

	when token expires

	Type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
issued

	when token was requested

	Type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
header

	token header read by python_jwt.process_jwt [https://rawgit.now.sh/davedoesdev/python-jwt/master/docs/_build/html/index.html#python_jwt.process_jwt]

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
claims

	token claims read by python_jwt.process_jwt [https://rawgit.now.sh/davedoesdev/python-jwt/master/docs/_build/html/index.html#python_jwt.process_jwt]

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
__init__(user=None, password=None, token=None)

	Instantiate a new python EBI AAP Object. You can generate a new object
providing both user and password, or by passing a valid token
string

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – your aap username

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – your password

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – a valid EBI AAP jwt token

	
auth_url = None

	

	
get_domains()

	Returns a list of domain managed by this object

	Returns

	a list of managed domains

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_duration()

	Get token remaining time before expiration

	Returns

	remaining time as
timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] object

	Return type

	datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]

	
is_expired()

	Return True if token is exipired, False otherwise

	Returns

	True if token is exipired

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
token

	Get/Set token as a string

pyUSIrest.client module

Created on Thu Dec 19 16:28:46 2019

@author: Paolo Cozzi <paolo.cozzi@ibba.cnr.it>

	
class pyUSIrest.client.Client(auth)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class to deal with EBI submission API. It perform request
modelling user token in request headers. You need to call this class after
instantiating an Auth object:

import getpass
from pyUSIrest.auth import Auth
from pyUSIrest.client import Client
auth = Auth(user=<you_aap_user>, password=getpass.getpass())
client = Client(auth)
response = client.get("https://submission-test.ebi.ac.uk/api/")

	
headers

	default headers for requests

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
last_response

	last response object read by this
class

	Type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
last_satus_code

	last status code read by this class

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
session

	a session object

	Type

	request.Session

	
auth

	a pyUSIrest Auth object

	Type

	Auth

	
__init__(auth)

	Instantiate the class

	Parameters

	auth (Auth) – a valid Auth object

	
auth

	Get/Set Auth object

	
check_headers(headers=None)

	Checking headers and token

	Parameters

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom header for request

	Returns

	an update headers tocken

	Return type

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict])

	
check_status(response, expected_status=200)

	Check response status. See HTTP status codes [https://submission.ebi.ac.uk/api/docs/ref_overview.html#_http_status_codes]

	Parameters

	
	response (requests.Reponse) – the reponse returned by requests

	method –

	
delete(url, headers={}, params={})

	Generic DELETE method

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom header for request

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom params for request

	Returns

	a response object

	Return type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
get(url, headers={}, params={})

	Generic GET method

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom headers for get request

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom params for get request

	Returns

	a response object

	Return type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
headers = {'Accept': 'application/hal+json', 'User-Agent': 'pyUSIrest 0.3.1'}

	

	
patch(url, payload={}, headers={}, params={})

	Generic PATCH method

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – data to send

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom header for request

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom params for request

	Returns

	a response object

	Return type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
post(url, payload={}, headers={}, params={})

	Generic POST method

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – data to send

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom header for request

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom params for request

	Returns

	a response object

	Return type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
put(url, payload={}, headers={}, params={})

	Generic PUT method

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – data to send

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom params for request

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – custom header for request

	Returns

	a response object

	Return type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
class pyUSIrest.client.Document(auth=None, data=None)

	Bases: pyUSIrest.client.Client

Base class for pyUSIrest classes. It models common methods and
attributes by calling Client and reading json response from
biosample API

	
_link

	_links data read from USI response

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_embeddedd

	_embedded data read from USI response

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
page

	page data read from USI response

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
name

	name of this object

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
data

	data from USI read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
__init__(auth=None, data=None)

	Instantiate the class

	Parameters

	auth (Auth) – a valid Auth object

	
classmethod clean_url(url)

	Remove stuff like {?projection} from url

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string url

	Returns

	the cleaned url

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
follow_self_url()

	Follow self url and update class attributes. For instance:

document.follow_self_url()

will reload document instance by requesting with
Client.get() using
document.data['_links']['self']['href'] as url

	
follow_tag(tag, force_keys=True)

	Pick a url from data attribute relying on tag, perform a request
and returns a document object. For instance:

document.follow_tag('userSubmissions')

will return a document instance by requesting with
Client.get() using
document._links['userSubmissions']['href'] as url

	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – a key from USI response dictionary

	force_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – set a new class attribute if not present

	Returns

	a document object

	Return type

	Document

	
get(url, force_keys=True)

	Override the Client.get method and read data into object:

document = Document(auth)
document.get(settings.ROOT_URL + "/api/")

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	force_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, define a new class attribute from data
keys

	Returns

	a response object

	Return type

	requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]

	
paginate()

	Follow all the pages. Return an iterator of document objects

	Parameters

	response (requests.Response [http://requests.kennethreitz.org/en/master/api/#requests.Response]) – a response object

	Yields

	Document – a new Document instance

	
read_data(data, force_keys=False)

	Read data from a dictionary object and set class attributes

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a data dictionary object read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	force_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, define a new class attribute from data
keys

	
classmethod read_url(auth, url)

	Read a url and returns a Document object

	Parameters

	
	auth (Auth) – an Auth object to pass to result

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – url to request

	Returns

	a document object

	Return type

	Document

	
pyUSIrest.client.is_date(string, fuzzy=False)

	Return whether the string can be interpreted as a date.

	Parameters

	
	string – str, string to check for date

	fuzzy – bool, ignore unknown tokens in string if True

pyUSIrest.exceptions module

Created on Fri Jan 10 16:44:49 2020

@author: Paolo Cozzi <paolo.cozzi@ibba.cnr.it>

	
exception pyUSIrest.exceptions.NotReadyError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Raised when doing stuff on not ready data (ex finalizing a Submission
after validation)

	
exception pyUSIrest.exceptions.TokenExpiredError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Raised when token expires while using pyUSIrest

	
exception pyUSIrest.exceptions.USIConnectionError

	Bases: ConnectionError [https://docs.python.org/3/library/exceptions.html#ConnectionError]

Deal with connection issues with API

	
exception pyUSIrest.exceptions.USIDataError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Deal with issues in USI data format

pyUSIrest.settings module

Created on Mon Nov 18 11:47:42 2019

@author: Paolo Cozzi <paolo.cozzi@ibba.cnr.it>

pyUSIrest.usi module

Created on Thu May 24 16:41:31 2018

@author: Paolo Cozzi <cozzi@ibba.cnr.it>

	
class pyUSIrest.usi.Domain(auth, data=None)

	Bases: pyUSIrest.client.Document

A class to deal with AAP domain objects

	
name

	domain name

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
data

	data (dict): data from AAP read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
domainName

	AAP domainName

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
domainDesc

	AAP domainDesc

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
domainReference

	AAP domainReference

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
link

	links data read from AAP response

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
__init__(auth, data=None)

	Instantiate the class

	Parameters

	
	auth (Auth) – a valid Auth object

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – instantiate the class from a dictionary of user data

	
create_profile(attributes={})

	Create a profile for this domain

	Parameters

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of attributes

	
users

	Get users belonging to this domain

	
class pyUSIrest.usi.Root(auth)

	Bases: pyUSIrest.client.Document

Models the USI API Root [https://submission-test.ebi.ac.uk/api/docs/ref_root_endpoint.html] endpoint

	
api_root

	The base URL for API endpoints

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(auth)

	Instantiate the class

	Parameters

	auth (Auth) – a valid Auth object

	
api_root = None

	

	
get_submission_by_name(submission_name)

	Got a specific submission object by providing its name

	Parameters

	submission_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – input submission name

	Returns

	The desidered submission as instance

	Return type

	Submission

	
get_team_by_name(team_name)

	Get a Team object by name

	Parameters

	team_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the team

	Returns

	a team object

	Return type

	Team

	
get_user_submissions(status=None, team=None)

	Follow the userSubmission url and returns all submission owned by
the user

	Parameters

	
	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – filter user submissions using this status

	team (str [https://docs.python.org/3/library/stdtypes.html#str]) – filter user submissions belonging to this team

	Returns

	A list of Submission objects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_user_teams()

	Follow userTeams url and returns all teams belonging to user

	Yields

	Team – a team object

	
class pyUSIrest.usi.Sample(auth, data=None)

	Bases: pyUSIrest.usi.TeamMixin, pyUSIrest.client.Document

A class to deal with USI Samples [https://submission-test.ebi.ac.uk/api/docs/ref_samples.html]

	
alias

	The sample alias (used to reference the same object)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
team

	team data

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
title

	sample title

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
description

	sample description

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
attributes

	sample attributes

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
sampleRelationships

	relationship between samples

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
taxonId

	taxon id

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
taxon

	taxon name

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
releaseDate

	when this sample will be relased to public

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
createdDate

	created date

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
lastModifiedDate

	last modified date

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
createdBy

	user_id who create this sample

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
lastModifiedBy

	last user_id who modified this sample

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
accession

	the biosample_id after submission to USI

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(auth, data=None)

	Instantiate the class

	Parameters

	
	auth (Auth) – a valid Auth object

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – instantiate the class from a dictionary of user data

	
delete()

	Delete this instance from a submission

	
get_validation_result()

	Return validation results for submission

	Returns

	the ValidationResult of this sample

	Return type

	ValidationResult

	
has_errors(ignorelist=[])

	Return True if validation results throw an error

	Parameters

	ignorelist (list [https://docs.python.org/3/library/stdtypes.html#list]) – ignore errors in these databanks

	Returns

	True if sample has an errors in one or more databank

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
patch(sample_data)

	Update sample by patching data with Client.patch()

	Parameters

	sample_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – sample data to update

	
read_data(data, force_keys=False)

	Read data from a dictionary object and set class attributes

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a data dictionary object read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	force_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, define a new class attribute from data
keys

	
reload()

	call Document.follow_self_url() and reload class
attributes

	
class pyUSIrest.usi.Submission(auth, data=None)

	Bases: pyUSIrest.usi.TeamMixin, pyUSIrest.client.Document

A class to deal with USI Submissions [https://submission-test.ebi.ac.uk/api/docs/ref_submissions.html]

	
id

	submission id (name() for compatibility)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
createdDate

	created date

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
lastModifiedDate

	last modified date

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
lastModifiedBy

	last user_id who modified this submission

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
submissionStatus

	submission status

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
submitter

	submitter data

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
createdBy

	user_id who create this submission

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
submissionDate

	date when this submission is submitted to
biosample

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(auth, data=None)

	Instantiate the class

	Parameters

	
	auth (Auth) – a valid Auth object

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – instantiate the class from a dictionary of user data

	
check_ready()

	Test if a submission can be submitted or not (Must have completed
validation processes)

	Returns

	True if ready for submission

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
create_sample(sample_data)

	Create a sample from a dictionary

	Parameters

	sample_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary of data

	Returns

	a Sample object

	Return type

	Sample

	
delete()

	Delete this submission instance from USI

	
finalize(ignorelist=[])

	Finalize a submission to insert data into biosample

	Parameters

	ignorelist (list [https://docs.python.org/3/library/stdtypes.html#list]) – ignore samples with errors in these databanks

	Returns

	output of finalize submission as a Document
object

	Return type

	Document

	
get_samples(status=None, has_errors=None, ignorelist=[])

	Returning all samples as a list. Can filter by errors and error
types:

returning samples with errors in other checks than Ena
submission.get_samples(has_errors=True, ignorelist=['Ena'])

returning samples which validation is still in progress
submission.get_samples(status='Pending')

Get all sample with errors in other fields than Ena databank

	Parameters

	
	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – filter samples by validation status
(Pending, Complete)

	has_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – filter samples with errors or none

	ingnore_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of errors to ignore

	Yields

	Sample – a Sample object

	
get_status()

	Count validation statues for submission

	Returns

	A counter object for different validation
status

	Return type

	collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter]

	
get_validation_results()

	Return validation results for submission

	Yields

	ValidationResult – a ValidationResult object

	
has_errors(ignorelist=[])

	Count sample errors for a submission

	Parameters

	ignorelist (list [https://docs.python.org/3/library/stdtypes.html#list]) – ignore samples with errors in these databanks

	Returns

	A counter object for samples with errors and
with no errors

	Return type

	collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter]

	
name

	Get/Set Submission id

	
read_data(data, force_keys=False)

	Read data from a dictionary object and set class attributes

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a data dictionary object read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	force_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, define a new class attribute from data
keys

	
reload()

	call Document.follow_self_url() and reload class
attributes

	
status

	Return submissionStatus attribute. Follow
submissionStatus link and update attribute is such attribute is
None

	Returns

	submission status as a string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update_status()

	Update submissionStatus attribute by following
submissionStatus link

	
class pyUSIrest.usi.Team(auth, data=None)

	Bases: pyUSIrest.client.Document

A class to deal with USI Team [https://submission-test.ebi.ac.uk/api/docs/ref_teams.html] objects

	
name

	team name

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
data

	data (dict): data from USI read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
__init__(auth, data=None)

	Instantiate the class

	Parameters

	
	auth (Auth) – a valid Auth object

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – instantiate the class from a dictionary of user data

	
create_submission()

	Create a new submission

	Returns

	the new submission as an instance

	Return type

	Submission

	
get_submissions(status=None)

	Follows submission url and get submissions from this team

	Parameters

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – filter submission using status

	Returns

	A list of Submission objects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
class pyUSIrest.usi.TeamMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
__init__()

	Instantiate the class

	
team

	Get/Set team name

	
class pyUSIrest.usi.User(auth, data=None)

	Bases: pyUSIrest.client.Document

Deal with EBI AAP endpoint to get user information

	
name

	Output of Auth.claims['nickname']

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
data

	data (dict): data from AAP read with
response.json() [http://requests.kennethreitz.org/en/master/api/#requests.Response.json]

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
userName

	AAP username

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
email

	AAP email

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
userReference

	AAP userReference

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(auth, data=None)

	Instantiate the class

	Parameters

	
	auth (Auth) – a valid Auth object

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – instantiate the class from a dictionary of user data

	
add_user_to_team(user_id, domain_id)

	Add a user to a team

	Parameters

	
	user_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the required user_id

	domain_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	the updated Domain object

	Return type

	Domain

	
create_team(description, centreName)

	Create a new team

	Parameters

	
	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – team description

	centreName (str [https://docs.python.org/3/library/stdtypes.html#str]) – team center name

	Returns

	the new team as a Team instance

	Return type

	Team

	
classmethod create_user(user, password, confirmPwd, email, full_name, organisation)

	Create another user into biosample AAP and return its ID

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – the new username

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – the user password

	confirmPwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – the user confirm password

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – the user email

	full_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full name of the user

	organisation (str [https://docs.python.org/3/library/stdtypes.html#str]) – organisation name

	Returns

	the new user_id as a string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_domain_by_name(domain_name)

	Get a domain by name

	Parameters

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the required team

	Returns

	the desidered Domain instance

	Return type

	Domain

	
get_domains()

	Get domains belonging to this instance

	Returns

	a list of Domain objects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_my_id()

	Get user id using own credentials, and set userReference attribute

	Returns

	the user AAP reference as a string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_team_by_name(team_name)

	Get a team by name

	Parameters

	team_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the required team

	Returns

	the desidered Team instance

	Return type

	Team

	
get_teams()

	Get teams belonging to this instance

	Returns

	a list of Team objects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_user_by_id(user_id)

	Get a User object by user_id

	Parameters

	user_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the required user_id

	Returns

	a user object

	Return type

	User

	
user_url = None

	

	
class pyUSIrest.usi.ValidationResult(auth, data=None)

	Bases: pyUSIrest.client.Document

	
__init__(auth, data=None)

	Instantiate the class

	Parameters

	
	auth (Auth) – a valid Auth object

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – instantiate the class from a dictionary of user data

	
has_errors(ignorelist=[])

	Return True if validation has errors

	Parameters

	ignorelist (list [https://docs.python.org/3/library/stdtypes.html#list]) – ignore errors in these databanks

	Returns

	True if sample has errors for at least one databank

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
pyUSIrest.usi.check_relationship(sample_data, team)

	Check relationship and add additional fields if missing

	
pyUSIrest.usi.check_releasedate(sample_data)

	Add release date to sample data if missing

Module contents

Top-level package for Python EBI submission REST API.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/cnr-ibba/pyUSIrest/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Python USI submission REST API could always use more documentation, whether as part of the
official Python USI submission REST API docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/cnr-ibba/pyUSIrest/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyUSIrest for local development.

	Fork the pyUSIrest repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyUSIrest.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyUSIrest
$ cd pyUSIrest/
$ pip install -r requirements_dev.txt
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 pyUSIrest tests
$ python setup.py test # or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.org/cnr-ibba/pyUSIrest/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_pyUSIrest

Deploying

Current development version is created using:

$ bump2version patch # possible: major / minor / patch

Other development version (dev1, `dev2) are managed using:

$ bump2version build

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Paolo Cozzi <paolo.cozzi@ibba.cnr.it>

Contributors

None yet. Why not be the first?

History

TODO

	get a Team instance from Submission instance

	Submission.has_errors make two identical queries, on to determine the
status and one to search errors, simplify it by doing only a query

	filtering sample by status or error make a lot of queries. Consider writing
coroutines or reading ValidationResult as pages

0.3.1 (2020-01-27)

	fix a bug when patching a sample: deal with team in relationship

	raise USIDataError on 40x status code

	Change Auth.__str__(): now it returns Token for Foo Bar will expire in HH:MM:SS

	add Auth.get_domains which returns self.claims['domains']

0.3.0 (2020-01-14)

Features

	modelled custom exceptions

	Set a default date if releaseDate attribute is missing

	improved documentation by describing how to sort and filter objects

	fix bug when adding samples to a submission retrieved with team.get_submission()

	Update documentation. Set taxon in sample data (mandatory attribute)

	displaying dates when print(Submission) instances

	Root.get_user_submissions() and other methods which returned list of objects
now return iterator objects

	str(auth) will report duration in hh:mm:ss

	compiling PDF using PNG images (change badges)

	raise no exceptions where no team is found (using Root.get_user_teams)

	Using namespaces to configure API endpoints (pyUSIrest.settings)

	move Root, User, Domain, Team, Submission, Sample
ValidationResult classes inside pyUSIrest.usi module

0.2.2 (2019-03-28)

Features

	Deal with API errors (50x, 40x)

0.2.1 (2019-01-15)

Features

	test for an empty submission (no samples)

	updated root.json, userSubmission.json test data

	submissionStatus is no longer an attribute, when feching submission by name
is present when getting user submissions

	follow submissionStatus link (if necessary)

	update submission status after create a new submission

	update submission status after get_submission_by_name

	update submission status after reload a just finalized submission

	Domain.users returns User objects in a list

	improved Submission.get_samples method

0.2.0 (2018-10-23)

Features

	Fetch submission by name

	changed library name to pyUSIrest

	published to pypi

	Finalize submission with PUT

0.1.0 (2018-10-17)

Features

	submit into biosample with python methods

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyUSIrest	

 	
 	
 pyUSIrest.auth	

 	
 	
 pyUSIrest.client	

 	
 	
 pyUSIrest.exceptions	

 	
 	
 pyUSIrest.settings	

 	
 	
 pyUSIrest.usi	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (pyUSIrest.auth.Auth method)

 	(pyUSIrest.client.Client method)

 	(pyUSIrest.client.Document method)

 	(pyUSIrest.usi.Domain method)

 	(pyUSIrest.usi.Root method)

 	(pyUSIrest.usi.Sample method)

 	(pyUSIrest.usi.Submission method)

 	(pyUSIrest.usi.Team method)

 	(pyUSIrest.usi.TeamMixin method)

 	(pyUSIrest.usi.User method)

 	(pyUSIrest.usi.ValidationResult method)

 	
 	_embeddedd (pyUSIrest.client.Document attribute)

 	_link (pyUSIrest.client.Document attribute)

A

 	
 	accession (pyUSIrest.usi.Sample attribute)

 	add_user_to_team() (pyUSIrest.usi.User method)

 	alias (pyUSIrest.usi.Sample attribute)

 	api_root (pyUSIrest.usi.Root attribute), [1]

 	
 	attributes (pyUSIrest.usi.Sample attribute)

 	Auth (class in pyUSIrest.auth)

 	auth (pyUSIrest.client.Client attribute), [1]

 	auth_url (pyUSIrest.auth.Auth attribute), [1]

C

 	
 	check_headers() (pyUSIrest.client.Client method)

 	check_ready() (pyUSIrest.usi.Submission method)

 	check_relationship() (in module pyUSIrest.usi)

 	check_releasedate() (in module pyUSIrest.usi)

 	check_status() (pyUSIrest.client.Client method)

 	claims (pyUSIrest.auth.Auth attribute)

 	clean_url() (pyUSIrest.client.Document class method)

 	Client (class in pyUSIrest.client)

 	
 	create_profile() (pyUSIrest.usi.Domain method)

 	create_sample() (pyUSIrest.usi.Submission method)

 	create_submission() (pyUSIrest.usi.Team method)

 	create_team() (pyUSIrest.usi.User method)

 	create_user() (pyUSIrest.usi.User class method)

 	createdBy (pyUSIrest.usi.Sample attribute)

 	(pyUSIrest.usi.Submission attribute)

 	createdDate (pyUSIrest.usi.Sample attribute)

 	(pyUSIrest.usi.Submission attribute)

D

 	
 	data (pyUSIrest.client.Document attribute)

 	(pyUSIrest.usi.Domain attribute)

 	(pyUSIrest.usi.Team attribute)

 	(pyUSIrest.usi.User attribute)

 	delete() (pyUSIrest.client.Client method)

 	(pyUSIrest.usi.Sample method)

 	(pyUSIrest.usi.Submission method)

 	
 	description (pyUSIrest.usi.Sample attribute)

 	Document (class in pyUSIrest.client)

 	Domain (class in pyUSIrest.usi)

 	domainDesc (pyUSIrest.usi.Domain attribute)

 	domainName (pyUSIrest.usi.Domain attribute)

 	domainReference (pyUSIrest.usi.Domain attribute)

E

 	
 	email (pyUSIrest.usi.User attribute)

 	
 	expire (pyUSIrest.auth.Auth attribute)

F

 	
 	finalize() (pyUSIrest.usi.Submission method)

 	
 	follow_self_url() (pyUSIrest.client.Document method)

 	follow_tag() (pyUSIrest.client.Document method)

G

 	
 	get() (pyUSIrest.client.Client method)

 	(pyUSIrest.client.Document method)

 	get_domain_by_name() (pyUSIrest.usi.User method)

 	get_domains() (pyUSIrest.auth.Auth method)

 	(pyUSIrest.usi.User method)

 	get_duration() (pyUSIrest.auth.Auth method)

 	get_my_id() (pyUSIrest.usi.User method)

 	get_samples() (pyUSIrest.usi.Submission method)

 	get_status() (pyUSIrest.usi.Submission method)

 	
 	get_submission_by_name() (pyUSIrest.usi.Root method)

 	get_submissions() (pyUSIrest.usi.Team method)

 	get_team_by_name() (pyUSIrest.usi.Root method)

 	(pyUSIrest.usi.User method)

 	get_teams() (pyUSIrest.usi.User method)

 	get_user_by_id() (pyUSIrest.usi.User method)

 	get_user_submissions() (pyUSIrest.usi.Root method)

 	get_user_teams() (pyUSIrest.usi.Root method)

 	get_validation_result() (pyUSIrest.usi.Sample method)

 	get_validation_results() (pyUSIrest.usi.Submission method)

H

 	
 	has_errors() (pyUSIrest.usi.Sample method)

 	(pyUSIrest.usi.Submission method)

 	(pyUSIrest.usi.ValidationResult method)

 	
 	header (pyUSIrest.auth.Auth attribute)

 	headers (pyUSIrest.client.Client attribute), [1]

I

 	
 	id (pyUSIrest.usi.Submission attribute)

 	is_date() (in module pyUSIrest.client)

 	
 	is_expired() (pyUSIrest.auth.Auth method)

 	issued (pyUSIrest.auth.Auth attribute)

L

 	
 	last_response (pyUSIrest.client.Client attribute)

 	last_satus_code (pyUSIrest.client.Client attribute)

 	lastModifiedBy (pyUSIrest.usi.Sample attribute)

 	(pyUSIrest.usi.Submission attribute)

 	
 	lastModifiedDate (pyUSIrest.usi.Sample attribute)

 	(pyUSIrest.usi.Submission attribute)

 	link (pyUSIrest.usi.Domain attribute)

N

 	
 	name (pyUSIrest.client.Document attribute)

 	(pyUSIrest.usi.Domain attribute)

 	(pyUSIrest.usi.Submission attribute)

 	(pyUSIrest.usi.Team attribute)

 	(pyUSIrest.usi.User attribute)

 	
 	NotReadyError

P

 	
 	page (pyUSIrest.client.Document attribute)

 	paginate() (pyUSIrest.client.Document method)

 	patch() (pyUSIrest.client.Client method)

 	(pyUSIrest.usi.Sample method)

 	post() (pyUSIrest.client.Client method)

 	put() (pyUSIrest.client.Client method)

 	
 	pyUSIrest (module)

 	pyUSIrest.auth (module)

 	pyUSIrest.client (module)

 	pyUSIrest.exceptions (module)

 	pyUSIrest.settings (module)

 	pyUSIrest.usi (module)

R

 	
 	read_data() (pyUSIrest.client.Document method)

 	(pyUSIrest.usi.Sample method)

 	(pyUSIrest.usi.Submission method)

 	read_url() (pyUSIrest.client.Document class method)

 	
 	releaseDate (pyUSIrest.usi.Sample attribute)

 	reload() (pyUSIrest.usi.Sample method)

 	(pyUSIrest.usi.Submission method)

 	Root (class in pyUSIrest.usi)

S

 	
 	Sample (class in pyUSIrest.usi)

 	sampleRelationships (pyUSIrest.usi.Sample attribute)

 	session (pyUSIrest.client.Client attribute)

 	status (pyUSIrest.usi.Submission attribute)

 	
 	Submission (class in pyUSIrest.usi)

 	submissionDate (pyUSIrest.usi.Submission attribute)

 	submissionStatus (pyUSIrest.usi.Submission attribute)

 	submitter (pyUSIrest.usi.Submission attribute)

T

 	
 	taxon (pyUSIrest.usi.Sample attribute)

 	taxonId (pyUSIrest.usi.Sample attribute)

 	Team (class in pyUSIrest.usi)

 	team (pyUSIrest.usi.Sample attribute)

 	(pyUSIrest.usi.TeamMixin attribute)

 	
 	TeamMixin (class in pyUSIrest.usi)

 	title (pyUSIrest.usi.Sample attribute)

 	token (pyUSIrest.auth.Auth attribute)

 	TokenExpiredError

U

 	
 	update_status() (pyUSIrest.usi.Submission method)

 	User (class in pyUSIrest.usi)

 	user_url (pyUSIrest.usi.User attribute)

 	userName (pyUSIrest.usi.User attribute)

 	
 	userReference (pyUSIrest.usi.User attribute)

 	users (pyUSIrest.usi.Domain attribute)

 	USIConnectionError

 	USIDataError

V

 	
 	ValidationResult (class in pyUSIrest.usi)

 _static/up.png

_images/badge.png
‘coverage 96%

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python USI submission REST API’s documentation!

 		
 Python USI submission REST API

 		
 Features

 		
 API Endpoints

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Creating an Auth object

 		
 Creating an USI User

 		
 Creating a Team

 		
 Add Profile to Domain

 		
 Adding User to Team

 		
 Create a Submission

 		
 Add Samples to a Submission

 		
 Check and finalize a Submission

 		
 Querying for biosample validation status

 		
 Checking errors

 		
 Finalize a Submission

 		
 Fetch a submission by name

 		
 Get Sample from a submission

 		
 Advanced Usage

 		
 Retrieving Submission Objects

 		
 Working with samples

 		
 pyUSIrest

 		
 pyUSIrest package

 		
 Submodules

 		
 pyUSIrest.auth module

 		
 pyUSIrest.client module

 		
 pyUSIrest.exceptions module

 		
 pyUSIrest.settings module

 		
 pyUSIrest.usi module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 TODO

 		
 0.3.1 (2020-01-27)

 		
 0.3.0 (2020-01-14)

 		
 Features

 		
 0.2.2 (2019-03-28)

 		
 Features

 		
 0.2.1 (2019-01-15)

 		
 Features

 		
 0.2.0 (2018-10-23)

 		
 Features

 		
 0.1.0 (2018-10-17)

 		
 Features

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

